If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-81=0
a = 1; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·1·(-81)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18}{2*1}=\frac{-18}{2} =-9 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18}{2*1}=\frac{18}{2} =9 $
| 1/12=x/8 | | 35q=5 | | 1/4y-9=1/6y | | -3(4b-10)=1/2(-24b+6) | | 4x+7=-8x+1 | | 2.3g=7.13 | | 3+5q=5-7q | | -20+3(x+4)=13x-6(x-4) | | 3+5a=5-7a | | j+5050=9999 | | x/4=-20/10 | | 6(1,170+w)=10,830 | | 55=11x | | 10/20=4/x | | 5x+3.50=13 | | 6t=7t-6 | | 6/10=155/x | | 72=0.6r | | 0=K^2-4k | | 96=12f | | n-5=10-5= | | ((x+5)/4)+((x+6)/5)=1 | | -2(2x+3)+2=x+5 | | 14u=70 | | 4(j+14)=72 | | 4(p+20=22 | | 24x=8/10 | | 14k=0 | | 2s+4=16 | | 4v+13=v+13 | | 17=1/5(20x-15)-2x | | -1/2m-3=10 |